Abo-Elnaga, I.G. & O. Kandler. 1965. [On the taxonomy of genus Lactobacillus Beijerinck. I. Subgenus Streptobacterium Orla Jensen] (German) Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 119:1-36.
Acedo, E. 1999. Definición taxonómica de Lactobacillus casei por técnicas moleculares. Tesis Doctoral. Universidad de Valencia.
Acedo, E & G. Perez-Martinez. 2003. Significant diferences between Lactobacillus casei subsp. casei ATCC 393T and a commonly used plasmid-cured derivative revealed by a polyphasic study. Int J Syst Evol Microbiol 53:67-75.
Alpert, C.A. & U. Siebers. 1997.The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the BglG family of transcriptional antiterminators. J Bacteriol 179:1555-15562.
Alvarez, M.A., A. Rodriguez & J.E. Suarez. 1999. Stable expression of the Lactobacillus casei bacteriophage A2 repressor blocks phage propagation during milk fermentation. J Appl Microbiol 86:812-816.
Amster-Choder, O. & A. Wright. 1992. Modulation of dimerization of a transcriptional antiterminator protein by phosphorylation. Science 257:1395-1397.
Archibald, F. 1986. Manganese: its adquisition by and function in the lactic acid bacteria. Crit Rev Microbiol 13:63-109.
Arfin, S.M. & H.E. Umbarger. 1969. The metabolism of valine and isoleucine in Escherichia coli. XVII. The role of induction in the derepression of acetohydroxy acid isomeroreductase. Biochem. Biophys Res Commun 37:902-908.
Aung-Hilbrich, L.M., G. Seidel, A. Wagner & W. Hillen. 2002.Quantification of the influence of HPrSer46P on CcpA-cre interaction. J Mol Biol 319:77-85.
Aymerich, S. & M. Steinmetz. 1992. Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Proc Natl Acad Sci USA 89:10410-10414.
Bardowski, J., S.D. Erlich & A. Chopin. 1994. BglR protin, which belongs to the BglG family of transcriptional antiterminators, is involved in b-glucoside utilization in Lactococcus lactis. J Bacteriol 176:5681-5685.
Bassit, N., C-Y. Boquien, D. Picque & G. Corrieu. 1993. Effect of initial oxigen concentration on diacetyl and acetoin production by Lactococcus lactis subsp. lactis biovar diaetylactis. Appl Environ Microbiol 59:1893-1897.
Benson, K. H., J. –J. Godon, P. Renault, H. G. Griffin & M. J. Gasson. 1996. Effect of ilvBN-encoded a-acetolactate synthase expression on diacetyl production in Lactococcus lactis. Appl Microbiol Biotechnol 45:107-111.
Bettenbrock, K. & C. Alpert. 1998. The gal genes for the Leloir Pathway of Lactobacillus casei 64H. Appl Environ Microbiol 64:2013-2019.
Bhowmilk, T. & E.H. Marth. 1990. b-Galactosidase of Pediococcus species: induction, purification and parcial characterization. Appl Microbiol Biotechnol 33:317-323.
Billot-Klein, D., R. Legrand, B. Schoot, J. van Heinjennoot & L. Gutman. 1997. Peptidoglucan structure of Lactobacillus casei, a species highly resistant to glycopeptide antibiotics. J Bacteriol 179:6208-6212.
Blencke, H.M., G. Homuth, H. Ludwig, U. Mader, M. Hecker & J. Stulke. 2003. Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng 5:133-49.
Borch, E. & G. Molin. 1989. The aerobic growth and product formation of Lactobacillus, Bochothrix and Carnobacterium in bath cultures. Appl Microbiol Biotechnol 30:81-88.
Boss, A., A. Nussbaum-Shochat & O. Amster-Choder. 1999. Characterization of the dimerization domain in BglG, an RNA-binding transcriptional antiterminator from Escherichia coli. J Bacteriol 181:1755-66.
Botsford J.L., Harman J.G. 1992. Cyclic AMP in prokaryotes. Microbiol Rev 56:100-122.
Brochu, D. & C. Vadeboncoeur. 1999. The HPr(Ser) kinase of Streptococcus salivarius: purification, properties, and cloning of the hprK gene. J Bacteriol 181:709-717.
Brock, T.D. & M.T. Madigan. 1991. Biology of microorganisms (Sixth Edition). Prentice-Hall International (UK) Limited. London.
Broome, M.C., M.P. Thomas, A.J. Hillier & G.R. Jago. 1980. Pyruvate dehydrogenase activity in group N streptococci. Aust J biol Sci 33:15-25.
Brückner, R. & F. Titgemeyer. 2002. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141-8.
Busby S, Ebright RH. 1999. Transcription activation by catabolite activator protein (CAP). J Mol Biol 293:199-213.
Chaillou, S., P.H. Pouewls & P.W. Postma. 1999. Transport of D-xylose in Lactobacillus pentosus, Lactobacillus casei and Lactobacillus plantarum: evidence for a mechanism of facilitated diffusion via the phosphoenolpyruvate:mannose phosphotransferase system. J bacteriol 181:4768-4773.
Chassy, B.M. & J.L. Flickinger. 1987. Transformation of Lactobaccillus casei by electroporation. FEMS Microbiol Lett 44:173-177.
Chassy, B.M., E. Gibson & A. Guiffrida. 1976. Mehod for the lysis of Gram-positive asporogenous bacteria with lysozyme. Appl Eviron Microbiol 39:153-158.
Chassy, B.M. & A. Guiffrida. 1980. Evidence for extrachomosomal elements in Lactobacillus. J Bacteriol 127:1576-1578.
Chassy, B.M. & C.A. Alpert. 1989. Molecular characterization of the plasmid-encoded lactose-PTS of Lactobacillus casei. FEMS Microbiol Rev 63:157-166.
Chauvaux S., I.T. Paulsen & M.H. Jr Saier. 1998. CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis. J Bacteriol 180:491-497.
Chen, Q., P.W. Postma & O. Amster-choder. 2000. Dephosphorilation of the Escherichia coli transcriptional antiterminator BglG by the sugar sensor BglF is the reversal of its phosphorilation. J Bacteriol 182:2033-2036.
Cogan, J.F., D. Walsh & S. Condon. 1989. Impact of aeration on the metabolic end-products formed from glucose and galactose by Streptococcus lactis. J Appl Bacteriol 66:77-84.
Collins, M.D, B.A. Phillips & P. Zanoni. 1989. Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp paracasei and subsp tolerans and Lactobacillus rhamnosus sp. nov.., comb. nov. Int. J. Syst. Bacteriol. 39:105-108.
Collins, M.D., U.M. Rodrigues, C. Ash, M. Aguirre, J.A.E. Farrow, A. Martinez-Murcia, B.A. Phillips, A.M. Williams & S. Wallbanks. 1991. Phylogenetic analyis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77:5-12.
Collins, M.D, J. Samelis, J. Metaxopoulos & S. Wallbanks. 1993. Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75:595-603.
Condon, S. 1987. Responses of lactic acid bacteria to oxygen. FEMS microbiol Rev 46:269-280.
Coullon, S., P. Chemardin, Y. Gueguen, A. Arnaud & P. Glazy. 1998. Purification and characterization of an intracellular b-glucosidase from Lactobacillus casei ATCC 393. Appl Biochem Biotechnol 74:104-114.
Davison, S.P., J.D. Santangelo, S.J. Reid & D.R. Woods. 1995. A Clostridium acetobutylicum regulator gene (regA) affecting amylase production in Bacillus subtilis. Microbiology 141:989-96.
Débarbouillé, M., M. Arnaud, A. Fouet, A. Klier & G. Rapoport. 1990. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol 172: 3966-3973.
De Bries, W., W.M.C. Kapteijn, E.G. Van der Beek & A.H. Stouthamer. 1970. Molar growth yields and fermentation balances of Lactobacillus casei 13 in batch cultures and in continuous cultures. J Gen Microbiol 63:333-345.
Dellaglio, F., V. Battazzi & M. Vescovo. 1975. Deoxyribonucleic acid homology among Lactobacillus species of the subgenus Streptobacterium Orla-Jensen. Int. J. Syst. Bacteriol. 25:160-172.
Deutscher J. & M.H. Jr Saier. 1983. ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. Proc Natl Acad Sci U S A 80:6790-6794.
Deutscher J., B. Pevec, K. Beyreuther, H.H. Kiltz & W. Hengstenberg. 1986. Streptococcal phosphoenolpyruvate-sugar phosphotransferase system: amino acid sequence and site of ATP-dependent phosphorylation of HPr. Biochemistry 25:6543-6551.
Deutscher J., E. Kuster, U. Bergstedt, V. Charrier & W. Hillen. 1995. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 15:1049-1053.
Deutscher J, Fischer C, Charrier V, Galinier A, Lindner C, Darbon E, Dossonnet V. 1997. Regulation of carbon metabolism in gram-positive bacteria by protein phosphorylation. Folia Microbiol 42:171-178.
Deutscher J, Galinier A, Martin-Verstraete I. 2001. Carbohydrate uptake and metabolism. En: Sonenschein AL, Hoch, JA, Losick R (eds), Bacillus subtilis and its closest relatives: from genes to cells. American Society for Microbiology, Washington DC. pp.137-158
Dicks, L.M.T., F. Dellaglio & M.D. Collins. 1995. Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov.. Int. J. Syst. Bacteriol. 45:375-397.
Dossonnet, V., V. Monedero, M. Zagorec, A. Galinier, G. Pérez-Martínez & J. Deutscher. 2000. Phosphorylation of HPr by the bifunctional HPr Kinase/P-ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J Bacteriol 182:2582-2590.
Egeter O. & R. Bruckner. 1996. Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus. Mol Microbiol 21:739-749.
Engesser, D.M. & W.P. Hammes. 1994. Non-heme catalase activity of lactic acid bacteria. Syst Appl Microbiol 17:11-19.
Euzéby, J.P. 1997. List of bacterial names with standing nomenclature: a folder available on the internet. Int. J. Syst. Bacteriol. 47:590-592.
Faires, N., S. Tobisch, S. Bachem, I. Martin-Verstraete, M. Hecker & J. Stulke. 1999. The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. J Mol Microbiol Biotechnol 1:141-148.
Fath, M.J. & R. Kolter. 1993. ABC exporters. Microbiol. Rev. 57:995-1017.
Fernandez de Palencia, P., M.C. Martin-Hernandez, H.M. Joosten & C. Pelaez. 1997. Isolation and characterization of proteinase- and aminopeptidase-deficient mutants of Lactobacillus casei subsp. casei IFPL 731. Lett Appl Microbiol 25:215-9.
Frey, P.A. 1996. The Leloir pathway: a mechanistic impertative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 10:461-470.
Friedman, A.M., T.O. Fischmann & T.A. Steitz. 1995. Crystal structure of lac repressor core tetramer and its implications for DNA looping. Science 268:1721-1727.
Fujita, Y., Y. Miwa, A. Galinier & J. Deutscher. 1995. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17:953-960.
Galinier, A., J. Haiech, M.C. Kilhoffer, M. Jaquinod, J. Stulke, J. Deutscher & I. Martin-Verstraete. 1997. The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci U S A 94:8439-8444.
Galinier, A., M. Kravanja, R. Engelmann, W. Hengstenberg, M.C. Kilhoffer, J. Deutscher & J. Haiech. 1998. New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc Natl Acad Sci U S A 95:1823-1828.
Garvie, E.I. 1980. Bacterial lactate deshidrogenases. Microbiol Rev 44:106-139.
Gasson, M.J., K. Benson, S. Swindell & H. Griffin. 1996. Metabolic enginering of the Lactococcus lactis diacetyl pathway. Le Lait 75:33-40.
Gauthier M., D. Brochu, L.D. Eltis, S. Thomas & C. Vadeboncoeur. 1997. Replacement of isoleucine-47 by threonine in the HPr protein of Streptococcus salivarius abrogates the preferential metabolism of glucose and fructose over lactose and melibiose but does not prevent the phosphorylation of HPr on serine-46. Mol Microbiol 25:695-705.
Godon, J.J., M.C. Chopin & S.D. Ehrlich. 1992. Branched-chain amino acid biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol 174:6580-6589.
Gordon, G.L. & H.W. Doelle. 1976. Purification, properties and immunological relationship of L(+)-lactate dehydrogenase from Lactobacillus casei. Eur J Biochem 67:543-555.
Gordon, A.J., P.A. Burns, D.F. Fix, F. Yatagai, F.L. Allen, M.J. Horsfall, J.A. Halliday, J. Gray, C. Bernelot-Moens & B.W. Glickman. 1988. Missense mutation in the lacI gene of Escherichia coli. Inferences on the structure of the repressor protein. J Mol Biol 200:239-51.
Görke, B. 2003. Regulation of the Escherichia coli antiterminator protein BglG by phosphorylation at multiple sites and evidence for transfer of phosphoryl groups between monomers. J Biol Chem [Epub ahead of print].
Görke, B. & B. Rak. 1999. Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations. EMBO J 18:3370-3379.
Gosalbes, M.J., V. Monedero, C.A. Alpert & G. Pérez-Martínez. 1997. Establishing a model to study the regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol Lett 148:83-89.
Gosalbes, M.J., V. Monedero & G. Pérez-Martínez. 1999. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei. J Bacteriol 181:3928-3934
Gosalbes, M.J., C.D. Esteban, J.L. Galan & G. Perez-Martinez. 2000. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 66:4822-4828.
Gosseringer R., E. Kuster, A. Galinier, J. Deutscher & W. Hillen. 1997. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. J Mol Biol 266:665-676.
Gottschalk, G. 1979. Bacterial Metabolism. Springer-Verlag. New York.
Goupil-Feuillerat, N., M. Cocaign-Bousquet, J.J. Godon, S.D. Ehrlich & P. Renault. 1997. Dual role of a-acetolactate decarboxylase in Lactococcus lactis subsp. lactis. J Bacteriol 179:6285-6293.
Goupil, N., G. Corthier, S. D. Ehrlich & P. Renault. 1996. Imbalance of leucine flux in Lactococcus lactis and its use for the isolation of diacetyl-overproducing strains. Appl Environ Microbiol 62:2636-2640.
Grundy, F.J., D.A. Waters, S.H. Allen & T.M. Henkin. 1993. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J Bacteriol 175:7348-55.
Guédon, E., P. Renault, S.D. Ehrlich C. Delorme. 2001.Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. J Bacteriol 183:3614-3622.
Guédon, E., E. Jamet P. Renault. 2002. Gene regulation in Lactococcus lactis: the gap between predicted and characterized regulators. Antonie Van Leeuwenhoek 82:93-112.
Hansen, P.A. 1968. Type strains of Lactobacillus species. American Type Culture Collection. Rockville, Md.
Hansen, P.A. & E.F. Lessel. 1971. Lactobacillis casei (Orla-Jensen) comb. Nov. Int J Syst Bacteriol 21:69-71.
Hegazi, J.D. & I.G. Abo-Elanga. 1987. Proteolytic activity of crude cell-free extract of Lactobacillus casei and Lactobacillus plantarum. Nahrung 31:225-232.
Hemme, D., W. Gaier, D.A. Winters, C. Foucaud & R.F. Vogel. 1994. Expression of Lactobacillus casei ATCC 393 b-galactosidase encode by plasmid pLZ15 in Lactococcus lactis CNRZ 1123. Lett Appl Microbiol 19:345-348.
Henkin T.M., F.J. Grundy, W.L. Nicholson & G.H. Chambliss. 1991. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli Lacl and GalR repressors. Mol Microbiol 5:575-584.
Hensel, R., U. Mayr, K.O. Stetter & O. Kandler. 1977. Comparative studies of lactic acid dehydrogenases in lactic acid bacteria. I. Purification and kinetics of the allosteric L-lactic acid dehydrogenase from Lactobacillus casei ssp. casei and Lactobacillus curvatus. Arch Microbiol 112:81-93.
Hickey, M.W., A.J. Hillier & G.R. Jago. 1986. Transport and metabolism of lactose, glucose and galactose in homofermentative lactobacilli. Appl Environ Microbiol 51:825-831.
Hols, P., P. Slos, P. Dutot, J. Reimund, P. Chabot, B. Delplace, J. Delcour & A. Mercenier. 1997. Efficient secretion of the model antigen M6-gp41E in Lactobacillus plantarum NCIMB 8826. Microbiology 143:2733-2741.
Hueck, C.J., W. Hillen & M.H. Jr Saier. 1994. Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol 145:503-518.
Hueck, C.J., A. Kraus, D Schmiedel & W. Hillen. 1995. Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium. Mol Microbiol 16:855-864.
Hugenholtz, J. 1993. Citrate metabolism in lactic acid bacteria. FEMS Microbiol Rev 12:165-178.
Hugenholtz, J., M. Kleerebezem, M. Starrenburg, J. Delcour, W. de Vos & P. Hols. 2000. Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 66:4112-4.
Hutkins, R.W. & H.A. Morris. 1987. Carbohydrate metabolism in Streptococcus thermophilus: a review. J Food Prot 50:876-884.
Huynh, P.L., I. Jankovic, N.F. Schnell R. Bruckner. 2000. Characterization of an HPr kinase mutant of Staphylococcus xylosus. J Bacteriol 182:1895-1902.
Idelson, M. & O. Amster-Choder. 1998. SacY, a transcriptional antiterminator from Bacillus subtilis, is regulated by phosphorylation in vivo. J Bacteriol 180:660-666.
Jones, B.E., V. Dossonnet, E. Kuster, W. Hillen, J. Deutscher & R.E. Klevit. 1997. Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 272:26530-26535.
Jourlin-Castelli, C., N. Mani, M.M. Nakano & A.L. Sonenshein. 2000. CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J Mol Biol 295:865-78.
Kandler, O. 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49:209-224.
Kandler, O. & N. Weiss. 1986. Regular, non-sporing Gram-positive rods, in Bergey’s Manual of Systematic Bacteriology, Vol. 2 (P. H. A. Sneath, N. S. Mair, M. E. Sharpe, y J. G. Holt, eds.), Williams and Wilkins, Baltimore, pp.1208-1234.
Kim, S.F., S.J. Baek & M.Y. Pack. 1991. Cloning and nucleotide sequence of the Lactobacillus casei lactate dehydrogenase gene. Appl Environ Microbiol 57:2413-2417.
Kim J.H., M.I. Voskuil & G.H. Chambliss. 1998. NADP, corepressor for the Bacillus catabolite control protein CcpA. Proc Natl Acad Sci U S A 95:9590-9595.
Kleina, L.G. & J.H. Miller. 1990. Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J Mol Biol 212:295-318.
Kraus, A., E. Küster, A. Wagner, K. Hoffmann & W. Hillen. 1998. Identification of a co-repressor binding site in catabolite control protein CcpA. Mol Microbiol 30:955-963.
Kravanja, M., R. Engelmann, V. Dossonnet, M. Bluggel, H.E. Meyer, R. Frank, A. Galinier, J. Deutscher, N. Schnell & W. Hengstenberg. 1999. The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol Microbiol 31:59-66.
Kundig, W., S. Ghosh & S. Roseman. 1964. Phosphate bound to a histidine in a protein as an intermediate in a novel phospho-transferase system. Proc Natl Acad Sci USA 52:1067-74.
Kuster E., T. Hilbich, M.K. Dahl & W. Hillen. 1999a. Mutations in catabolite control protein CcpA separating growth effects from catabolite repression. J Bacteriol 181:4125-8.
Kuster E., A. Wagner, U. Volker & W. Hillen. 1999b. Mutations in catabolite control protein CcpA showing glucose-independent regulation in Bacillus megaterium. J Bacteriol 181:7634-8.
Leboeuf C., Y. Auffray & A. Hartke. 2000a. Cloning, sequencing and characterization of the ccpA gene from Enterococcus faecalis. Int J Food Microbiol 55:109-113.
Leboeuf, C., L. Leblanc, Y. Auffray & A. Hartke. 2000b.Characterization of the ccpA gene of Enterococcus faecalis: identification of starvation-inducible proteins regulated by CcpA. J Bacteriol 182:5799-5806.
Leer, R.J., N. van Luijk, M. posno & P.H. Pouwels. 1992. Structural and fuctional analysis of two criptic plasmids from Lactobacillus pentosus MD353 and Lactobacillus plantarum ATCC 8014. Mol Gen Genet 234:265-274.
Lee-Wickner, L.J. & B.M. Chassy. 1984. Production and regeneration of Lactobacillus casei protoplasts. Appl Environ microbiol 48:994-1000.
Lee-Wickner, L.J. & B.M. Chassy. 1985. Characterzation and molecular cloning for cryptic plasmids isolated from Lactobacillus casei. Appl Environ microbiol 49:1154-1161.
Lewis, M., G. Chang, N.C. Horton, M.A. Kercher, H.C. Pace, M.A. Schumacher, R.G. Brennan, & P. Lu. 1996. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271:1247-54.
Lokman, B.C., P. van Santen, J.C. Verdoes, J. Kruse, R.J. Leer, M. Posno & P.H. Pouwels. 1991. Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus. Mol Gen Genet 230:161-169.
Lokman, B.C., R.J. Leer, R van Sorge & P.H. Pouwels. 1994. Promoter analysis and transcriptional regulation of Lactobacillus pentosus genes involved in xylose catabolism. Mol Gen Genet 245:117-125.
Lokman, B.C., M. Heerikhuisen, R.J. Leer, A. van den Broek, Y. Borsboom, S. Chaillou, P.W. Postma & P.H. Pouwels. 1997. Regulation of expression of the Lactobacillus pentosus xylAB operon. J Bacteriol 179:5391-5367.
London, J. 1990. Uncommon pathways of metabolism among lactic acid bacteria. FEMS Microbiol Rev 87:103-111.
Lucey, C.A. & S. Condon. 1986. Active role of oxygen and NADH oxidase in growth and energy metabolism in Leuconostoc. J Gen Microbiol 132:1789-1796.
Ludwig, H., C. Meinken, A. Matin & J. Stulke. 2002. Insufficient expression of the ilv-leu operon encoding enzymes of branched-chain amino acid biosynthesis limits growth of a Bacillus subtilis ccpA mutant. J Bacteriol 184:5174-5178.
Luesink, E.J., R.E. van Herpen, B.P. Grossiord, O.P. Kuipers & W.M de Vos. 1998. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol Microbiol 30:789-798.
Luesink, E.J., C.M. Beumer, O.P. Kuipers, & W.M. De Vos. 1999a. Molecular characterization of the Lactococcus lactis ptsHI operon and analysis of the regulatory role of HPr. J Bacteriol 181(3):764-71.
Luesink, E.J., J.D. Marugg, O.P. Kuipers & W.M. de Vos WM. 1999b.Characterization of the divergent sacBK and sacAR operons, involved in sucrose utilization by Lactococcus lactis. J Bacteriol 181:1924-6.
Maassen, C.B.M., J.D. Laman & M.J. den Bak-Glashouer. 1999. Instruments for oral disease-intervention estrategies: recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccinationn or myelin proteins for oral tolerance induction in multiple sclerosis. Vaccine 17:2117-2128.
Mahr, K., W. Hillen & F. Titgemeyer. 2000. Carbon catabolite repression in Lactobacillus pentosus: analysis of the ccpA region. Appl Environ Microbiol 66:277-283.
Mahr, K., C.D. Esteban, W. Hillen, F. Titgemeyer & G. Perez-Martinez. 2002. Cross communication between components of carbon catabolite repression of Lactobacillus casei and Bacillus megaterium. J Mol Microbiol Biotechnol. 4:489-494.
Marasco, R., L. Muscariello, M. Varcamonti, M, De Felice & M. Sacco. 1998. Expression of the bglH gene of Lactobacillus plantarum is controlled by carbon catabolite repression. J Bacteriol 180:3400-3404.
Marasco, R., I. Salatiello, M. de Felipe & M. Sacco. 2000. A physical and functional analysis of the newly-identified bglGPT operon of Lactobacillus plantarum. FEMS Microbiol Lett 186:269-279.
Marasco, R., L. Muscariello, M. Rigano & M. Sacco. 2002. Mutational analysis of the bglH catabolite-responsive element (cre) in Lactobacillus plantarum. FEMS Microbiol Lett 208:143-146.
Marshall, V.M.E. & A.Y. Tamime. 1997. Physiology and biochemistry of fermented milks. pp. 153-192. In Microbiology and biochemistry of cheese and fermented milk. B.A. Law (ed). Blackie Academic & Professional. London.
Meadow, N.D., D.K. Fox & S. Roseman. 1990. The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem 59:497-542.
Mills, C.K. & E.F. Lessel. 1973. Lactobacterium zeae Kuznestov, a later subjective sysnonym of Lactobacillus casei (Orla-Jensen) Hansen and Lessel. Int J Syst Bacteriol 23:430-432.
Miwa, Y., M. Saikawa & Y. Fujita. 1994. Possible function and some properties of the CcpA protein of Bacillus subtilis. Microbiology 140:2567-75.
Miwa Y., A. Nakata, A. Ogiwara, M. Yamamoto & Y. Fujita. 2000. Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 28:1206-1210.
Monedero, V., M.J. Gosalbes & G. Pérez-Martínez. 1997. Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J Bacteriol 179:6657-6664.
Monedero, V., S. Poncet, I. Mijakovic, S. Fieulaine, V. Dossonnet, I. Martin-Verstraete, S. Nessler & J. Deutscher. 2001. Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism. EMBO J 20:3928-37.
Morel, F., J. Frot-Coutaz, D. Aubel, R. Portalier & D. Atlan. 1999. Characterization of a prolidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397 with an unusual regulation of biosynthesis. Microbiology 145:437-446.
Morel, F., M. Lamarque, I Bissardon, D. Atlan & A. Galinier. 2001. Autoregulation of the biosynthesis of the CcpA-like protein, PepR1, in Lactobacillus delbrueckii subsp bulgaricus. J Mol Microbiol Biotechnol 3:63-66.
Moreno, M.S., B.L. Schneider, R.R. Maile, W. Weyler & M.H. Jr Saier. 2001. Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 39:1366-1381.
Mori, K., K. Yamazaki, T. Ishiyama, M. Katsumata, K. Kobayashi, Y. Kawai, N. Inoue & H. Shinano. 1997. Comparative sequences analyses of the gene coding for 16S rRNA of Lactobacillus casei-related taxa. Int J Syst Bacteriol 47:54-57.
Müller-Hill B. 1983. Sequence homology between Lac and Gal repressors and three sugar-binding periplasmic proteins. Nature 302:163-4.
Muscariello L., R. Marasco, M. De Felice & M. Sacco. 2001.The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum. Appl Environ Microbiol 67:2903-2907.
Nagasaki, H., K. Ito, S. Matsuzaki & S. Tanaka. 1992. Existence of phosphoenolpyruvate: carbohydrate phosphotransferase systems in Lactobacillus fermentum, an obligate heterofermenter. Microbiol Immunol 36:533-8.
Nelson, D.L. & M.M. Cox. 2001. Lehninger Principios de Bioquímica (tercera edición). Ediciones Omega. Barcelona.
Neves, A.R., A. Ramos, M.C. Nunes, M. Kleerebezem, J. Hugenholtz, W.M. de Vos, J. Almeida, & H. Santos. 1999. In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol Bioeng 64(2):200-12.
Olah, G.A., S. Trakhanov, J. Trewhella & F.A. Quiocho. 1993. Leucine/isoleucine/valine-binding protein contracts upon binding of ligand. J Biol Chem 268:16241-16247.
Orla-Jensen, S. 1919. The lactic acid bacteria. Report of the Danish Science Academy 2:79-197.
Palles, T., T. Beresford, S. Condon & T.M. Cogan. 1998. Citrate metabolism in Lactobacillus casei and Lactobacillus plantarum. J Appl Microbiol 85:147-154.
Pelletier, C., C. Bouley, C. Cayuela, S. Bouttier, P. Bourlioux & M.N. Bellon-Fontaine. 1997. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei and Lactobacillus rhamnosus strains. Appl Environ Microbiol 63:1725-1731.
Perez-Arellano, I., M. Zuñiga & G. Perez-Martinez. 2001. Construction of compatible wide-host-range shuttle vectors for lactic acid bacteria and Escherichia coli. Plasmid 46:106-116.
Platteeuw, C., J. Hugenholtz, M. Starrenburg, I. van Alen-Boerrigter & W.M. de Vos. 1995. Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl Environ Microbiol 61:3967-71.
Poolman, B. 1993. Energy transduction in lactic acid bacteria. FEMS Microbiol. Rev. 12:125-148.
Postma, P.W., J.W Lengeler and G.R. Jacobson. 1993. Phosphoenolpyruvate:carbohydrate phosfotransferase systems of bacteria. Microbiol. Rev. 57:543-594.
Posthuma, C.C., R. Bader, R. Engelmann, P.W. Postma, W. Hengstenberg & P.H. Pouwels. 2002. Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA, from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system. Appl Environ Microbiol 68:831-837.
Premi, L., W.E. Sandine & P.R. Elliker. 1972. Lactose-hydrolyzing enzimes of Lactobacillus species. Appl Microbiol 24:51-57.
Presecan-Siedel, E., A. Galinier, R. Longin, J. Deutscher, A. Danchin, P. Glaser & I. Martin-Verstraete. 1999. Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J Bacteriol 181:6889-6897.
Reizer, J., C. Hoischen, F. Titgemeyer, C. Rivolta, R. Rabus, J. Stulke, D. Karamata, M.H. Jr Saier & W. Hillen. 1998. A novel protein kinase that controls carbon catabolite repression in bacteria. Mol Microbiol 27:1157-1169.
Saier MH Jr, Chauvaux S, Deutscher J, Reizer J, Ye JJ. 1995. Protein phosphorylation and regulation of carbon metabolism in gram-negative versus gram-positive bacteria. Trends Biochem Sci 20:267-271.
Saier, M.H. Jr & M. Crasnier. 1996. Inducer exclusion and the regulation of sugar transport. Res Microbiol 147:482-489.
Saier, M.H. Jr, S. Chauvaux, G.M. Cook, J. Deutscher, I.T. Paulsen, J. Reizer & J.J. Ye. 1996. Catabolite repression and inducer control in Gram-positive bacteria. Microbiology 142:217-230.
Sawers, G & G. Watson. 1998. A glycyl radical solution: oxyen-dependent interconversión of pyruvate formate-lyase. Mol Microbiol 29:945-954.
Schick, J., B. Weber, J.R. Klein & B. Henrich. 1999. PepR1, a CcpA-like transcription regulator of Lactobacillus delbrueckii subsp. lactis. Microbiology 145:3147-3154.
Schnetz, K. & B. Rak. 1990. b-Glucoside permease represses the bgl operon of E. coli by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme II, the key element in catabolic control. Proc Natl Acad Sci USA 87:5074-5078.
Schnetz, K., J. Stülke, S. Gertz, S. Krüger, M. Krieg, M. Hecker & B. Rak. 1996. LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178: 1971-1979.
Schumaker, M.A., K.Y. Choi, H. Zalkin & R.G. Brennan. 1994. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by a helices. Science 266:763-770.
Sedewitz, B., K.H. Schleifer & F. Gotz. 1984. Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum. J Bacteriol 160:462-5.
Sharff, A.J., L.E. Rodseth, J.C. Spurlino & F.A. Quiocho. 1992. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry 31:10657-10663.
Sjöberg, A. & B. Hahn-Hägerdahl. 1989. b-glucose-1-P a possible mediator for polysaccharide formation in maltose-assimilating Lactococcus lactis. Appl Environ Microbiol 55:1549-1554.
Smart, J.B & T.D. Thomas. 1987. Effec of oxygen on lactose metabolism in lactic streptococci. Appl Environ Microbiol 53:533-541.
Smith, M.R., J. Hugenholtz, P. Mikoczi, E. Ree, A.W. Bunch & J.A.M. Bont. 1992. The stability of lactose and citrate plasmids in Lactococcus lactis biovar diacetylactis. FEMS Microbiol Lett 96:7-12.
Sneath, P.H.A., N.S. Mair, M.E. Sharpe & J.G. Holt (eds). 1986. Bergey´s manual of Systematic Bacteriology. Vol. 2. Williams and Wilkins. Baltimore, MD, USA. Pp. 1208-1234.
Stackebrandt, E., V.J Fowler & C.R. Woese. 1983. A phylogenetic analysis of lactobacilli, Pediococcus pentosaceus and Leuconostoc mesenteroides. Syst Appl Microbiol 4:326-337.
Stackebrandt, E. & M. Teuber. 1988. Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie 70:317-24.
Stucky K., J. Schick, J.R. Klein, B. Henrich & R. Plapp. 1996. Characterization of pepR1, a gene coding for a potential transcriptional regulator of Lactobacillus delbrueckii subsp. lactis DSM7290. FEMS Microbiol Lett 136:63-69.
Stülke, J., I. Martin-Verstraete, M. Zagorec, M. Rose, A. Klier & G. Rapoport. 1997. Induction of Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol 25:65-78.
Stülke, J., M. Arnaud, G. Rapoport & I. Martin-Verstraete. 1998. PRD, a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 28:865-874.
Swindell, S.R., K.H. Benson, H.G. Griffin, P. Renault, S.D. Ehrlich & M.J. Gasson. 1996. Genetic manipulation of the pathway for diacetyl metabolism in Lactococcus lactis. Appl Environ Microbiol 62:2641-2643.
Takahashi, S., K. Abbe & T. Yamada. 1982. Purification of pyruvate formate-lyase from Streptococcus mutans and its regulatory properties. J bacteriol 149:672-682.
Thomas, T.D., D.C. Ellwood & V.C.M. Longyear. 1979. Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J Bacteriol 138:109-117.
Thomas, T.D., K.W. Turner & V.L. Crow. 1980. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products and regulation. J bacteriol 144:672-682.
Thompson, J. 1979. Lactose metabolism in Streptococcus lactis: Phosphorilation of galactose and glucose moieties in vivo. J Bacteriol 140:774-785.
Thompson J. & D.A. Torchia. 1984. Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis. J Bacteriol 158(3):791-800.
Tobisch, S., D. Zuhlke, J. Bernhardt, J. Stulke & M. Hecker. 1999. Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J Bacteriol 181:6996-7004.
Tortosa, P., A. Aymerich, C. Lindner, M.H.Jr. Saier, J. Reizer & D. Le Coq. 1997. Multiple phosphorylation of SacY, a Bacillus subtilis antiterminator negatively controlled by the phosphotransferase system. J Biol Chem 272:17230-17237.
Umbarger, H.E. 1996. Biosynthesis of the branched-chain amino acids. pp 442-457. In Scherichia coli and Salmonella celular and molecular biology. F.C. Neidhardt (ed). ASM Press. Wasington D.C.
van den Bogaard P.T., M. Kleerebezem, O.P. Kuipers & W.M de Vos. 2000. Control of lactose transport, beta-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvate-dependent phosphotransferase system sugar. J Bacteriol 182:5982-5989.
Veyrat, A., V. Monedero & G. Pérez-Martínez. 1994. Glucose transport by the phosphoenolpyruvate:mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology 140:1141-1149.
Viana, R., V. Monedero, V. Dossonnet, C. Vadeboncoeur, G. Pérez-Martínez & J. Deutscher. 2000. Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol Microbiol 36:570-584.
Viana R. 2002. Caracterización de elementos clave en la regulación del catabolismo de azúcares en Lactobacillus casei. Tesis doctoral.. Facultad de Farmacia. Universitat de València.
Viana, R., J. Deutscher, G. Pérez-Martínez & V. Monedero. 2003. Datos no publicados.
Weickert M.J. & S. Adhya. 1992. A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem 267:15869-15874.
Yebra, M.J., A. Veyrat, M.A. Santos & G. Pérez-Martínez G. 2000. Genetics of L-sorbose transport and metabolism in Lactobacillus casei. J Bacteriol 182:155-163.
Yebra, M.J. & G. Pérez-Martinez. 2002. Cross-talk between the L-sorbose and D-sorbitol (D-glucitol) metabolic pathways in Lactobacillus casei. Microbiol 148:2351-2359.
Zúñiga, M., M. Champomier-Verges, M. Zagorec & G. Pérez-Martínez. 1998. Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake. J Bacteriol 180:4154-4159.
Zúñiga, M., M.C. Miralles & G. Pérez-Martínez. 2002. The Product of arcR, the sixth gene of the arc operon of Lactobacillus sakei, is essential for expression of the arginine deiminase pathway. Appl Environ Microbiol 68:6051-6058.